Metamath Proof Explorer


Theorem xrltso

Description: 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005)

Ref Expression
Assertion xrltso < Or *

Proof

Step Hyp Ref Expression
1 xrlttri x * y * x < y ¬ x = y y < x
2 xrlttr x * y * z * x < y y < z x < z
3 1 2 isso2i < Or *