Metamath Proof Explorer


Theorem isso2i

Description: Deduce strict ordering from its properties. (Contributed by NM, 29-Jan-1996) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses isso2i.1 x A y A x R y ¬ x = y y R x
isso2i.2 x A y A z A x R y y R z x R z
Assertion isso2i R Or A

Proof

Step Hyp Ref Expression
1 isso2i.1 x A y A x R y ¬ x = y y R x
2 isso2i.2 x A y A z A x R y y R z x R z
3 equid x = x
4 3 orci x = x x R x
5 nfv y x A x A x = x x R x ¬ x R x
6 eleq1w y = x y A x A
7 6 anbi2d y = x x A y A x A x A
8 equequ2 y = x x = y x = x
9 breq1 y = x y R x x R x
10 8 9 orbi12d y = x x = y y R x x = x x R x
11 breq2 y = x x R y x R x
12 11 notbid y = x ¬ x R y ¬ x R x
13 10 12 bibi12d y = x x = y y R x ¬ x R y x = x x R x ¬ x R x
14 7 13 imbi12d y = x x A y A x = y y R x ¬ x R y x A x A x = x x R x ¬ x R x
15 1 con2bid x A y A x = y y R x ¬ x R y
16 5 14 15 chvarfv x A x A x = x x R x ¬ x R x
17 4 16 mpbii x A x A ¬ x R x
18 17 anidms x A ¬ x R x
19 15 biimprd x A y A ¬ x R y x = y y R x
20 19 orrd x A y A x R y x = y y R x
21 3orass x R y x = y y R x x R y x = y y R x
22 20 21 sylibr x A y A x R y x = y y R x
23 18 2 22 issoi R Or A