Description: The intersection of two open sets of a topology is an open set. (Contributed by Glauco Siliprandi, 21-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inopnd.1 | |- ( ph -> J e. Top ) |
|
| inopnd.2 | |- ( ph -> A e. J ) |
||
| inopnd.3 | |- ( ph -> B e. J ) |
||
| Assertion | inopnd | |- ( ph -> ( A i^i B ) e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inopnd.1 | |- ( ph -> J e. Top ) |
|
| 2 | inopnd.2 | |- ( ph -> A e. J ) |
|
| 3 | inopnd.3 | |- ( ph -> B e. J ) |
|
| 4 | inopn | |- ( ( J e. Top /\ A e. J /\ B e. J ) -> ( A i^i B ) e. J ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A i^i B ) e. J ) |