Metamath Proof Explorer
Description: EqualityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
int-eqtransd.1 |
|- ( ph -> A = B ) |
|
|
int-eqtransd.2 |
|- ( ph -> B = C ) |
|
Assertion |
int-eqtransd |
|- ( ph -> A = C ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
int-eqtransd.1 |
|- ( ph -> A = B ) |
2 |
|
int-eqtransd.2 |
|- ( ph -> B = C ) |
3 |
1 2
|
eqtrd |
|- ( ph -> A = C ) |