Metamath Proof Explorer


Theorem int-eqtransd

Description: EqualityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-eqtransd.1
|- ( ph -> A = B )
int-eqtransd.2
|- ( ph -> B = C )
Assertion int-eqtransd
|- ( ph -> A = C )

Proof

Step Hyp Ref Expression
1 int-eqtransd.1
 |-  ( ph -> A = B )
2 int-eqtransd.2
 |-  ( ph -> B = C )
3 1 2 eqtrd
 |-  ( ph -> A = C )