Description: EquMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | int-eqmvtd.1 | |- ( ph -> C e. RR ) |
|
int-eqmvtd.2 | |- ( ph -> D e. RR ) |
||
int-eqmvtd.3 | |- ( ph -> A = B ) |
||
int-eqmvtd.4 | |- ( ph -> A = ( C + D ) ) |
||
Assertion | int-eqmvtd | |- ( ph -> C = ( B - D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-eqmvtd.1 | |- ( ph -> C e. RR ) |
|
2 | int-eqmvtd.2 | |- ( ph -> D e. RR ) |
|
3 | int-eqmvtd.3 | |- ( ph -> A = B ) |
|
4 | int-eqmvtd.4 | |- ( ph -> A = ( C + D ) ) |
|
5 | 3 4 | eqtr3d | |- ( ph -> B = ( C + D ) ) |
6 | 5 | oveq1d | |- ( ph -> ( B - D ) = ( ( C + D ) - D ) ) |
7 | 1 | recnd | |- ( ph -> C e. CC ) |
8 | 2 | recnd | |- ( ph -> D e. CC ) |
9 | 7 8 | pncand | |- ( ph -> ( ( C + D ) - D ) = C ) |
10 | 6 9 | eqtrd | |- ( ph -> ( B - D ) = C ) |
11 | 10 | eqcomd | |- ( ph -> C = ( B - D ) ) |