Description: EquMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | int-eqmvtd.1 | |- ( ph -> C e. RR ) |
|
| int-eqmvtd.2 | |- ( ph -> D e. RR ) |
||
| int-eqmvtd.3 | |- ( ph -> A = B ) |
||
| int-eqmvtd.4 | |- ( ph -> A = ( C + D ) ) |
||
| Assertion | int-eqmvtd | |- ( ph -> C = ( B - D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-eqmvtd.1 | |- ( ph -> C e. RR ) |
|
| 2 | int-eqmvtd.2 | |- ( ph -> D e. RR ) |
|
| 3 | int-eqmvtd.3 | |- ( ph -> A = B ) |
|
| 4 | int-eqmvtd.4 | |- ( ph -> A = ( C + D ) ) |
|
| 5 | 3 4 | eqtr3d | |- ( ph -> B = ( C + D ) ) |
| 6 | 5 | oveq1d | |- ( ph -> ( B - D ) = ( ( C + D ) - D ) ) |
| 7 | 1 | recnd | |- ( ph -> C e. CC ) |
| 8 | 2 | recnd | |- ( ph -> D e. CC ) |
| 9 | 7 8 | pncand | |- ( ph -> ( ( C + D ) - D ) = C ) |
| 10 | 6 9 | eqtrd | |- ( ph -> ( B - D ) = C ) |
| 11 | 10 | eqcomd | |- ( ph -> C = ( B - D ) ) |