Metamath Proof Explorer
Description: EquivalenceImpliesDoubleInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
int-eqineqd.1 |
|- ( ph -> B e. RR ) |
|
|
int-eqineqd.2 |
|- ( ph -> A = B ) |
|
Assertion |
int-eqineqd |
|- ( ph -> B <_ A ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
int-eqineqd.1 |
|- ( ph -> B e. RR ) |
| 2 |
|
int-eqineqd.2 |
|- ( ph -> A = B ) |
| 3 |
2
|
eqcomd |
|- ( ph -> B = A ) |
| 4 |
1 3
|
eqled |
|- ( ph -> B <_ A ) |