Metamath Proof Explorer


Theorem int-eqineqd

Description: EquivalenceImpliesDoubleInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-eqineqd.1
|- ( ph -> B e. RR )
int-eqineqd.2
|- ( ph -> A = B )
Assertion int-eqineqd
|- ( ph -> B <_ A )

Proof

Step Hyp Ref Expression
1 int-eqineqd.1
 |-  ( ph -> B e. RR )
2 int-eqineqd.2
 |-  ( ph -> A = B )
3 2 eqcomd
 |-  ( ph -> B = A )
4 1 3 eqled
 |-  ( ph -> B <_ A )