Metamath Proof Explorer


Theorem int-ineqmvtd

Description: IneqMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-ineqmvtd.1
|- ( ph -> B e. RR )
int-ineqmvtd.2
|- ( ph -> C e. RR )
int-ineqmvtd.3
|- ( ph -> D e. RR )
int-ineqmvtd.4
|- ( ph -> B <_ A )
int-ineqmvtd.5
|- ( ph -> A = ( C + D ) )
Assertion int-ineqmvtd
|- ( ph -> ( B - D ) <_ C )

Proof

Step Hyp Ref Expression
1 int-ineqmvtd.1
 |-  ( ph -> B e. RR )
2 int-ineqmvtd.2
 |-  ( ph -> C e. RR )
3 int-ineqmvtd.3
 |-  ( ph -> D e. RR )
4 int-ineqmvtd.4
 |-  ( ph -> B <_ A )
5 int-ineqmvtd.5
 |-  ( ph -> A = ( C + D ) )
6 4 5 breqtrd
 |-  ( ph -> B <_ ( C + D ) )
7 1 3 2 lesubaddd
 |-  ( ph -> ( ( B - D ) <_ C <-> B <_ ( C + D ) ) )
8 6 7 mpbird
 |-  ( ph -> ( B - D ) <_ C )