Description: IneqMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | int-ineqmvtd.1 | |- ( ph -> B e. RR ) |
|
int-ineqmvtd.2 | |- ( ph -> C e. RR ) |
||
int-ineqmvtd.3 | |- ( ph -> D e. RR ) |
||
int-ineqmvtd.4 | |- ( ph -> B <_ A ) |
||
int-ineqmvtd.5 | |- ( ph -> A = ( C + D ) ) |
||
Assertion | int-ineqmvtd | |- ( ph -> ( B - D ) <_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-ineqmvtd.1 | |- ( ph -> B e. RR ) |
|
2 | int-ineqmvtd.2 | |- ( ph -> C e. RR ) |
|
3 | int-ineqmvtd.3 | |- ( ph -> D e. RR ) |
|
4 | int-ineqmvtd.4 | |- ( ph -> B <_ A ) |
|
5 | int-ineqmvtd.5 | |- ( ph -> A = ( C + D ) ) |
|
6 | 4 5 | breqtrd | |- ( ph -> B <_ ( C + D ) ) |
7 | 1 3 2 | lesubaddd | |- ( ph -> ( ( B - D ) <_ C <-> B <_ ( C + D ) ) ) |
8 | 6 7 | mpbird | |- ( ph -> ( B - D ) <_ C ) |