Metamath Proof Explorer


Theorem int-ineq1stprincd

Description: FirstPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-ineq1stprincd.1
|- ( ph -> A e. RR )
int-ineq1stprincd.2
|- ( ph -> B e. RR )
int-ineq1stprincd.3
|- ( ph -> C e. RR )
int-ineq1stprincd.4
|- ( ph -> D e. RR )
int-ineq1stprincd.5
|- ( ph -> B <_ A )
int-ineq1stprincd.6
|- ( ph -> D <_ C )
Assertion int-ineq1stprincd
|- ( ph -> ( B + D ) <_ ( A + C ) )

Proof

Step Hyp Ref Expression
1 int-ineq1stprincd.1
 |-  ( ph -> A e. RR )
2 int-ineq1stprincd.2
 |-  ( ph -> B e. RR )
3 int-ineq1stprincd.3
 |-  ( ph -> C e. RR )
4 int-ineq1stprincd.4
 |-  ( ph -> D e. RR )
5 int-ineq1stprincd.5
 |-  ( ph -> B <_ A )
6 int-ineq1stprincd.6
 |-  ( ph -> D <_ C )
7 2 4 1 3 5 6 le2addd
 |-  ( ph -> ( B + D ) <_ ( A + C ) )