Description: FirstPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | int-ineq1stprincd.1 | |- ( ph -> A e. RR ) |
|
int-ineq1stprincd.2 | |- ( ph -> B e. RR ) |
||
int-ineq1stprincd.3 | |- ( ph -> C e. RR ) |
||
int-ineq1stprincd.4 | |- ( ph -> D e. RR ) |
||
int-ineq1stprincd.5 | |- ( ph -> B <_ A ) |
||
int-ineq1stprincd.6 | |- ( ph -> D <_ C ) |
||
Assertion | int-ineq1stprincd | |- ( ph -> ( B + D ) <_ ( A + C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-ineq1stprincd.1 | |- ( ph -> A e. RR ) |
|
2 | int-ineq1stprincd.2 | |- ( ph -> B e. RR ) |
|
3 | int-ineq1stprincd.3 | |- ( ph -> C e. RR ) |
|
4 | int-ineq1stprincd.4 | |- ( ph -> D e. RR ) |
|
5 | int-ineq1stprincd.5 | |- ( ph -> B <_ A ) |
|
6 | int-ineq1stprincd.6 | |- ( ph -> D <_ C ) |
|
7 | 2 4 1 3 5 6 | le2addd | |- ( ph -> ( B + D ) <_ ( A + C ) ) |