Metamath Proof Explorer


Theorem int-ineq2ndprincd

Description: SecondPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-ineq2ndprincd.1
|- ( ph -> A e. RR )
int-ineq2ndprincd.2
|- ( ph -> B e. RR )
int-ineq2ndprincd.3
|- ( ph -> C e. RR )
int-ineq2ndprincd.4
|- ( ph -> B <_ A )
int-ineq2ndprincd.5
|- ( ph -> 0 <_ C )
Assertion int-ineq2ndprincd
|- ( ph -> ( B x. C ) <_ ( A x. C ) )

Proof

Step Hyp Ref Expression
1 int-ineq2ndprincd.1
 |-  ( ph -> A e. RR )
2 int-ineq2ndprincd.2
 |-  ( ph -> B e. RR )
3 int-ineq2ndprincd.3
 |-  ( ph -> C e. RR )
4 int-ineq2ndprincd.4
 |-  ( ph -> B <_ A )
5 int-ineq2ndprincd.5
 |-  ( ph -> 0 <_ C )
6 2 1 3 5 4 lemul1ad
 |-  ( ph -> ( B x. C ) <_ ( A x. C ) )