Description: SecondPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | int-ineq2ndprincd.1 | |- ( ph -> A e. RR ) |
|
| int-ineq2ndprincd.2 | |- ( ph -> B e. RR ) |
||
| int-ineq2ndprincd.3 | |- ( ph -> C e. RR ) |
||
| int-ineq2ndprincd.4 | |- ( ph -> B <_ A ) |
||
| int-ineq2ndprincd.5 | |- ( ph -> 0 <_ C ) |
||
| Assertion | int-ineq2ndprincd | |- ( ph -> ( B x. C ) <_ ( A x. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-ineq2ndprincd.1 | |- ( ph -> A e. RR ) |
|
| 2 | int-ineq2ndprincd.2 | |- ( ph -> B e. RR ) |
|
| 3 | int-ineq2ndprincd.3 | |- ( ph -> C e. RR ) |
|
| 4 | int-ineq2ndprincd.4 | |- ( ph -> B <_ A ) |
|
| 5 | int-ineq2ndprincd.5 | |- ( ph -> 0 <_ C ) |
|
| 6 | 2 1 3 5 4 | lemul1ad | |- ( ph -> ( B x. C ) <_ ( A x. C ) ) |