Metamath Proof Explorer
Description: SecondPrincipleOfInequality generator rule. (Contributed by Stanislas
Polu, 7-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
int-ineq2ndprincd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
int-ineq2ndprincd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
int-ineq2ndprincd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
|
|
int-ineq2ndprincd.4 |
⊢ ( 𝜑 → 𝐵 ≤ 𝐴 ) |
|
|
int-ineq2ndprincd.5 |
⊢ ( 𝜑 → 0 ≤ 𝐶 ) |
|
Assertion |
int-ineq2ndprincd |
⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) ≤ ( 𝐴 · 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
int-ineq2ndprincd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
int-ineq2ndprincd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
int-ineq2ndprincd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
int-ineq2ndprincd.4 |
⊢ ( 𝜑 → 𝐵 ≤ 𝐴 ) |
5 |
|
int-ineq2ndprincd.5 |
⊢ ( 𝜑 → 0 ≤ 𝐶 ) |
6 |
2 1 3 5 4
|
lemul1ad |
⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) ≤ ( 𝐴 · 𝐶 ) ) |