Metamath Proof Explorer


Theorem int-ineq2ndprincd

Description: SecondPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-ineq2ndprincd.1 ( 𝜑𝐴 ∈ ℝ )
int-ineq2ndprincd.2 ( 𝜑𝐵 ∈ ℝ )
int-ineq2ndprincd.3 ( 𝜑𝐶 ∈ ℝ )
int-ineq2ndprincd.4 ( 𝜑𝐵𝐴 )
int-ineq2ndprincd.5 ( 𝜑 → 0 ≤ 𝐶 )
Assertion int-ineq2ndprincd ( 𝜑 → ( 𝐵 · 𝐶 ) ≤ ( 𝐴 · 𝐶 ) )

Proof

Step Hyp Ref Expression
1 int-ineq2ndprincd.1 ( 𝜑𝐴 ∈ ℝ )
2 int-ineq2ndprincd.2 ( 𝜑𝐵 ∈ ℝ )
3 int-ineq2ndprincd.3 ( 𝜑𝐶 ∈ ℝ )
4 int-ineq2ndprincd.4 ( 𝜑𝐵𝐴 )
5 int-ineq2ndprincd.5 ( 𝜑 → 0 ≤ 𝐶 )
6 2 1 3 5 4 lemul1ad ( 𝜑 → ( 𝐵 · 𝐶 ) ≤ ( 𝐴 · 𝐶 ) )