Metamath Proof Explorer
Description: InequalityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
int-ineqtransd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
int-ineqtransd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
int-ineqtransd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
|
|
int-ineqtransd.4 |
⊢ ( 𝜑 → 𝐵 ≤ 𝐴 ) |
|
|
int-ineqtransd.5 |
⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) |
|
Assertion |
int-ineqtransd |
⊢ ( 𝜑 → 𝐶 ≤ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
int-ineqtransd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
int-ineqtransd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
int-ineqtransd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
int-ineqtransd.4 |
⊢ ( 𝜑 → 𝐵 ≤ 𝐴 ) |
5 |
|
int-ineqtransd.5 |
⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) |
6 |
3 2 1 5 4
|
letrd |
⊢ ( 𝜑 → 𝐶 ≤ 𝐴 ) |