Metamath Proof Explorer


Theorem int-ineqtransd

Description: InequalityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-ineqtransd.1 ( 𝜑𝐴 ∈ ℝ )
int-ineqtransd.2 ( 𝜑𝐵 ∈ ℝ )
int-ineqtransd.3 ( 𝜑𝐶 ∈ ℝ )
int-ineqtransd.4 ( 𝜑𝐵𝐴 )
int-ineqtransd.5 ( 𝜑𝐶𝐵 )
Assertion int-ineqtransd ( 𝜑𝐶𝐴 )

Proof

Step Hyp Ref Expression
1 int-ineqtransd.1 ( 𝜑𝐴 ∈ ℝ )
2 int-ineqtransd.2 ( 𝜑𝐵 ∈ ℝ )
3 int-ineqtransd.3 ( 𝜑𝐶 ∈ ℝ )
4 int-ineqtransd.4 ( 𝜑𝐵𝐴 )
5 int-ineqtransd.5 ( 𝜑𝐶𝐵 )
6 3 2 1 5 4 letrd ( 𝜑𝐶𝐴 )