Metamath Proof Explorer


Theorem int-ineqtransd

Description: InequalityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-ineqtransd.1
|- ( ph -> A e. RR )
int-ineqtransd.2
|- ( ph -> B e. RR )
int-ineqtransd.3
|- ( ph -> C e. RR )
int-ineqtransd.4
|- ( ph -> B <_ A )
int-ineqtransd.5
|- ( ph -> C <_ B )
Assertion int-ineqtransd
|- ( ph -> C <_ A )

Proof

Step Hyp Ref Expression
1 int-ineqtransd.1
 |-  ( ph -> A e. RR )
2 int-ineqtransd.2
 |-  ( ph -> B e. RR )
3 int-ineqtransd.3
 |-  ( ph -> C e. RR )
4 int-ineqtransd.4
 |-  ( ph -> B <_ A )
5 int-ineqtransd.5
 |-  ( ph -> C <_ B )
6 3 2 1 5 4 letrd
 |-  ( ph -> C <_ A )