Metamath Proof Explorer
Description: SecondPrincipleOfInequality generator rule. (Contributed by Stanislas
Polu, 7-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
int-ineq2ndprincd.1 |
|
|
|
int-ineq2ndprincd.2 |
|
|
|
int-ineq2ndprincd.3 |
|
|
|
int-ineq2ndprincd.4 |
|
|
|
int-ineq2ndprincd.5 |
|
|
Assertion |
int-ineq2ndprincd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
int-ineq2ndprincd.1 |
|
2 |
|
int-ineq2ndprincd.2 |
|
3 |
|
int-ineq2ndprincd.3 |
|
4 |
|
int-ineq2ndprincd.4 |
|
5 |
|
int-ineq2ndprincd.5 |
|
6 |
2 1 3 5 4
|
lemul1ad |
|