Metamath Proof Explorer


Theorem int-ineq2ndprincd

Description: SecondPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-ineq2ndprincd.1 φ A
int-ineq2ndprincd.2 φ B
int-ineq2ndprincd.3 φ C
int-ineq2ndprincd.4 φ B A
int-ineq2ndprincd.5 φ 0 C
Assertion int-ineq2ndprincd φ B C A C

Proof

Step Hyp Ref Expression
1 int-ineq2ndprincd.1 φ A
2 int-ineq2ndprincd.2 φ B
3 int-ineq2ndprincd.3 φ C
4 int-ineq2ndprincd.4 φ B A
5 int-ineq2ndprincd.5 φ 0 C
6 2 1 3 5 4 lemul1ad φ B C A C