Metamath Proof Explorer
Description: SecondPrincipleOfInequality generator rule. (Contributed by Stanislas
Polu, 7-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
int-ineq2ndprincd.1 |
|
|
|
int-ineq2ndprincd.2 |
|
|
|
int-ineq2ndprincd.3 |
|
|
|
int-ineq2ndprincd.4 |
|
|
|
int-ineq2ndprincd.5 |
|
|
Assertion |
int-ineq2ndprincd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
int-ineq2ndprincd.1 |
|
| 2 |
|
int-ineq2ndprincd.2 |
|
| 3 |
|
int-ineq2ndprincd.3 |
|
| 4 |
|
int-ineq2ndprincd.4 |
|
| 5 |
|
int-ineq2ndprincd.5 |
|
| 6 |
2 1 3 5 4
|
lemul1ad |
|