Metamath Proof Explorer
Description: FirstPrincipleOfInequality generator rule. (Contributed by Stanislas
Polu, 7-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
int-ineq1stprincd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
int-ineq1stprincd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
int-ineq1stprincd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
|
|
int-ineq1stprincd.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
|
|
int-ineq1stprincd.5 |
⊢ ( 𝜑 → 𝐵 ≤ 𝐴 ) |
|
|
int-ineq1stprincd.6 |
⊢ ( 𝜑 → 𝐷 ≤ 𝐶 ) |
|
Assertion |
int-ineq1stprincd |
⊢ ( 𝜑 → ( 𝐵 + 𝐷 ) ≤ ( 𝐴 + 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
int-ineq1stprincd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
int-ineq1stprincd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
int-ineq1stprincd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
int-ineq1stprincd.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
|
int-ineq1stprincd.5 |
⊢ ( 𝜑 → 𝐵 ≤ 𝐴 ) |
6 |
|
int-ineq1stprincd.6 |
⊢ ( 𝜑 → 𝐷 ≤ 𝐶 ) |
7 |
2 4 1 3 5 6
|
le2addd |
⊢ ( 𝜑 → ( 𝐵 + 𝐷 ) ≤ ( 𝐴 + 𝐶 ) ) |