Metamath Proof Explorer


Theorem int-ineq1stprincd

Description: FirstPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-ineq1stprincd.1 ( 𝜑𝐴 ∈ ℝ )
int-ineq1stprincd.2 ( 𝜑𝐵 ∈ ℝ )
int-ineq1stprincd.3 ( 𝜑𝐶 ∈ ℝ )
int-ineq1stprincd.4 ( 𝜑𝐷 ∈ ℝ )
int-ineq1stprincd.5 ( 𝜑𝐵𝐴 )
int-ineq1stprincd.6 ( 𝜑𝐷𝐶 )
Assertion int-ineq1stprincd ( 𝜑 → ( 𝐵 + 𝐷 ) ≤ ( 𝐴 + 𝐶 ) )

Proof

Step Hyp Ref Expression
1 int-ineq1stprincd.1 ( 𝜑𝐴 ∈ ℝ )
2 int-ineq1stprincd.2 ( 𝜑𝐵 ∈ ℝ )
3 int-ineq1stprincd.3 ( 𝜑𝐶 ∈ ℝ )
4 int-ineq1stprincd.4 ( 𝜑𝐷 ∈ ℝ )
5 int-ineq1stprincd.5 ( 𝜑𝐵𝐴 )
6 int-ineq1stprincd.6 ( 𝜑𝐷𝐶 )
7 2 4 1 3 5 6 le2addd ( 𝜑 → ( 𝐵 + 𝐷 ) ≤ ( 𝐴 + 𝐶 ) )