Metamath Proof Explorer
Description: FirstPrincipleOfInequality generator rule. (Contributed by Stanislas
Polu, 7-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
int-ineq1stprincd.1 |
|
|
|
int-ineq1stprincd.2 |
|
|
|
int-ineq1stprincd.3 |
|
|
|
int-ineq1stprincd.4 |
|
|
|
int-ineq1stprincd.5 |
|
|
|
int-ineq1stprincd.6 |
|
|
Assertion |
int-ineq1stprincd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
int-ineq1stprincd.1 |
|
| 2 |
|
int-ineq1stprincd.2 |
|
| 3 |
|
int-ineq1stprincd.3 |
|
| 4 |
|
int-ineq1stprincd.4 |
|
| 5 |
|
int-ineq1stprincd.5 |
|
| 6 |
|
int-ineq1stprincd.6 |
|
| 7 |
2 4 1 3 5 6
|
le2addd |
|