Metamath Proof Explorer


Theorem int-ineqmvtd

Description: IneqMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-ineqmvtd.1 φ B
int-ineqmvtd.2 φ C
int-ineqmvtd.3 φ D
int-ineqmvtd.4 φ B A
int-ineqmvtd.5 φ A = C + D
Assertion int-ineqmvtd φ B D C

Proof

Step Hyp Ref Expression
1 int-ineqmvtd.1 φ B
2 int-ineqmvtd.2 φ C
3 int-ineqmvtd.3 φ D
4 int-ineqmvtd.4 φ B A
5 int-ineqmvtd.5 φ A = C + D
6 4 5 breqtrd φ B C + D
7 1 3 2 lesubaddd φ B D C B C + D
8 6 7 mpbird φ B D C