Metamath Proof Explorer


Theorem int-eqineqd

Description: EquivalenceImpliesDoubleInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-eqineqd.1 φ B
int-eqineqd.2 φ A = B
Assertion int-eqineqd φ B A

Proof

Step Hyp Ref Expression
1 int-eqineqd.1 φ B
2 int-eqineqd.2 φ A = B
3 2 eqcomd φ B = A
4 1 3 eqled φ B A