Metamath Proof Explorer


Theorem int-eqineqd

Description: EquivalenceImpliesDoubleInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-eqineqd.1 ( 𝜑𝐵 ∈ ℝ )
int-eqineqd.2 ( 𝜑𝐴 = 𝐵 )
Assertion int-eqineqd ( 𝜑𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 int-eqineqd.1 ( 𝜑𝐵 ∈ ℝ )
2 int-eqineqd.2 ( 𝜑𝐴 = 𝐵 )
3 2 eqcomd ( 𝜑𝐵 = 𝐴 )
4 1 3 eqled ( 𝜑𝐵𝐴 )