Metamath Proof Explorer


Theorem int-eqmvtd

Description: EquMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-eqmvtd.1 φ C
int-eqmvtd.2 φ D
int-eqmvtd.3 φ A = B
int-eqmvtd.4 φ A = C + D
Assertion int-eqmvtd φ C = B D

Proof

Step Hyp Ref Expression
1 int-eqmvtd.1 φ C
2 int-eqmvtd.2 φ D
3 int-eqmvtd.3 φ A = B
4 int-eqmvtd.4 φ A = C + D
5 3 4 eqtr3d φ B = C + D
6 5 oveq1d φ B D = C + D - D
7 1 recnd φ C
8 2 recnd φ D
9 7 8 pncand φ C + D - D = C
10 6 9 eqtrd φ B D = C
11 10 eqcomd φ C = B D