Description: Break a number into its integer part and its fractional part. (Contributed by NM, 31-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intfrac | |- ( A e. RR -> A = ( ( |_ ` A ) + ( A mod 1 ) ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | modfrac | |- ( A e. RR -> ( A mod 1 ) = ( A - ( |_ ` A ) ) )  | 
						|
| 2 | 1 | oveq2d | |- ( A e. RR -> ( ( |_ ` A ) + ( A mod 1 ) ) = ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) )  | 
						
| 3 | reflcl | |- ( A e. RR -> ( |_ ` A ) e. RR )  | 
						|
| 4 | 3 | recnd | |- ( A e. RR -> ( |_ ` A ) e. CC )  | 
						
| 5 | recn | |- ( A e. RR -> A e. CC )  | 
						|
| 6 | 4 5 | pncan3d | |- ( A e. RR -> ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) = A )  | 
						
| 7 | 2 6 | eqtr2d | |- ( A e. RR -> A = ( ( |_ ` A ) + ( A mod 1 ) ) )  |