Metamath Proof Explorer


Theorem intimass

Description: The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020)

Ref Expression
Assertion intimass
|- ( |^| A " B ) C_ |^| { x | E. a e. A x = ( a " B ) }

Proof

Step Hyp Ref Expression
1 r19.12
 |-  ( E. b e. B A. a e. A <. b , y >. e. a -> A. a e. A E. b e. B <. b , y >. e. a )
2 elimaint
 |-  ( y e. ( |^| A " B ) <-> E. b e. B A. a e. A <. b , y >. e. a )
3 elintima
 |-  ( y e. |^| { x | E. a e. A x = ( a " B ) } <-> A. a e. A E. b e. B <. b , y >. e. a )
4 1 2 3 3imtr4i
 |-  ( y e. ( |^| A " B ) -> y e. |^| { x | E. a e. A x = ( a " B ) } )
5 4 ssriv
 |-  ( |^| A " B ) C_ |^| { x | E. a e. A x = ( a " B ) }