Metamath Proof Explorer


Theorem intimass

Description: The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020)

Ref Expression
Assertion intimass ( 𝐴𝐵 ) ⊆ { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = ( 𝑎𝐵 ) }

Proof

Step Hyp Ref Expression
1 r19.12 ( ∃ 𝑏𝐵𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 → ∀ 𝑎𝐴𝑏𝐵𝑏 , 𝑦 ⟩ ∈ 𝑎 )
2 elimaint ( 𝑦 ∈ ( 𝐴𝐵 ) ↔ ∃ 𝑏𝐵𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 )
3 elintima ( 𝑦 { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = ( 𝑎𝐵 ) } ↔ ∀ 𝑎𝐴𝑏𝐵𝑏 , 𝑦 ⟩ ∈ 𝑎 )
4 1 2 3 3imtr4i ( 𝑦 ∈ ( 𝐴𝐵 ) → 𝑦 { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = ( 𝑎𝐵 ) } )
5 4 ssriv ( 𝐴𝐵 ) ⊆ { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = ( 𝑎𝐵 ) }