Description: The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | intimass | ⊢ ( ∩ 𝐴 “ 𝐵 ) ⊆ ∩ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = ( 𝑎 “ 𝐵 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.12 | ⊢ ( ∃ 𝑏 ∈ 𝐵 ∀ 𝑎 ∈ 𝐴 〈 𝑏 , 𝑦 〉 ∈ 𝑎 → ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 〈 𝑏 , 𝑦 〉 ∈ 𝑎 ) | |
2 | elimaint | ⊢ ( 𝑦 ∈ ( ∩ 𝐴 “ 𝐵 ) ↔ ∃ 𝑏 ∈ 𝐵 ∀ 𝑎 ∈ 𝐴 〈 𝑏 , 𝑦 〉 ∈ 𝑎 ) | |
3 | elintima | ⊢ ( 𝑦 ∈ ∩ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = ( 𝑎 “ 𝐵 ) } ↔ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 〈 𝑏 , 𝑦 〉 ∈ 𝑎 ) | |
4 | 1 2 3 | 3imtr4i | ⊢ ( 𝑦 ∈ ( ∩ 𝐴 “ 𝐵 ) → 𝑦 ∈ ∩ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = ( 𝑎 “ 𝐵 ) } ) |
5 | 4 | ssriv | ⊢ ( ∩ 𝐴 “ 𝐵 ) ⊆ ∩ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = ( 𝑎 “ 𝐵 ) } |