Description: The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | intimass2 | ⊢ ( ∩ 𝐴 “ 𝐵 ) ⊆ ∩ 𝑥 ∈ 𝐴 ( 𝑥 “ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intimass | ⊢ ( ∩ 𝐴 “ 𝐵 ) ⊆ ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝑥 “ 𝐵 ) } | |
2 | intima0 | ⊢ ∩ 𝑥 ∈ 𝐴 ( 𝑥 “ 𝐵 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝑥 “ 𝐵 ) } | |
3 | 1 2 | sseqtrri | ⊢ ( ∩ 𝐴 “ 𝐵 ) ⊆ ∩ 𝑥 ∈ 𝐴 ( 𝑥 “ 𝐵 ) |