Metamath Proof Explorer


Theorem intxp

Description: Intersection of Cartesian products is the Cartesian product of intersection of domains and ranges. See also inxp and iinxp . (Contributed by Zhi Wang, 30-Oct-2025)

Ref Expression
Hypotheses intxp.1
|- ( ph -> A =/= (/) )
intxp.2
|- ( ( ph /\ x e. A ) -> x = ( dom x X. ran x ) )
intxp.3
|- X = |^|_ x e. A dom x
intxp.4
|- Y = |^|_ x e. A ran x
Assertion intxp
|- ( ph -> |^| A = ( X X. Y ) )

Proof

Step Hyp Ref Expression
1 intxp.1
 |-  ( ph -> A =/= (/) )
2 intxp.2
 |-  ( ( ph /\ x e. A ) -> x = ( dom x X. ran x ) )
3 intxp.3
 |-  X = |^|_ x e. A dom x
4 intxp.4
 |-  Y = |^|_ x e. A ran x
5 intiin
 |-  |^| A = |^|_ x e. A x
6 2 iineq2dv
 |-  ( ph -> |^|_ x e. A x = |^|_ x e. A ( dom x X. ran x ) )
7 5 6 eqtrid
 |-  ( ph -> |^| A = |^|_ x e. A ( dom x X. ran x ) )
8 iinxp
 |-  ( A =/= (/) -> |^|_ x e. A ( dom x X. ran x ) = ( |^|_ x e. A dom x X. |^|_ x e. A ran x ) )
9 1 8 syl
 |-  ( ph -> |^|_ x e. A ( dom x X. ran x ) = ( |^|_ x e. A dom x X. |^|_ x e. A ran x ) )
10 7 9 eqtrd
 |-  ( ph -> |^| A = ( |^|_ x e. A dom x X. |^|_ x e. A ran x ) )
11 3 4 xpeq12i
 |-  ( X X. Y ) = ( |^|_ x e. A dom x X. |^|_ x e. A ran x )
12 10 11 eqtr4di
 |-  ( ph -> |^| A = ( X X. Y ) )