| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intxp.1 |
|- ( ph -> A =/= (/) ) |
| 2 |
|
intxp.2 |
|- ( ( ph /\ x e. A ) -> x = ( dom x X. ran x ) ) |
| 3 |
|
intxp.3 |
|- X = |^|_ x e. A dom x |
| 4 |
|
intxp.4 |
|- Y = |^|_ x e. A ran x |
| 5 |
|
intiin |
|- |^| A = |^|_ x e. A x |
| 6 |
2
|
iineq2dv |
|- ( ph -> |^|_ x e. A x = |^|_ x e. A ( dom x X. ran x ) ) |
| 7 |
5 6
|
eqtrid |
|- ( ph -> |^| A = |^|_ x e. A ( dom x X. ran x ) ) |
| 8 |
|
iinxp |
|- ( A =/= (/) -> |^|_ x e. A ( dom x X. ran x ) = ( |^|_ x e. A dom x X. |^|_ x e. A ran x ) ) |
| 9 |
1 8
|
syl |
|- ( ph -> |^|_ x e. A ( dom x X. ran x ) = ( |^|_ x e. A dom x X. |^|_ x e. A ran x ) ) |
| 10 |
7 9
|
eqtrd |
|- ( ph -> |^| A = ( |^|_ x e. A dom x X. |^|_ x e. A ran x ) ) |
| 11 |
3 4
|
xpeq12i |
|- ( X X. Y ) = ( |^|_ x e. A dom x X. |^|_ x e. A ran x ) |
| 12 |
10 11
|
eqtr4di |
|- ( ph -> |^| A = ( X X. Y ) ) |