| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intxp.1 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 2 |
|
intxp.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 = ( dom 𝑥 × ran 𝑥 ) ) |
| 3 |
|
intxp.3 |
⊢ 𝑋 = ∩ 𝑥 ∈ 𝐴 dom 𝑥 |
| 4 |
|
intxp.4 |
⊢ 𝑌 = ∩ 𝑥 ∈ 𝐴 ran 𝑥 |
| 5 |
|
intiin |
⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 |
| 6 |
2
|
iineq2dv |
⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝑥 = ∩ 𝑥 ∈ 𝐴 ( dom 𝑥 × ran 𝑥 ) ) |
| 7 |
5 6
|
eqtrid |
⊢ ( 𝜑 → ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 ( dom 𝑥 × ran 𝑥 ) ) |
| 8 |
|
iinxp |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ( dom 𝑥 × ran 𝑥 ) = ( ∩ 𝑥 ∈ 𝐴 dom 𝑥 × ∩ 𝑥 ∈ 𝐴 ran 𝑥 ) ) |
| 9 |
1 8
|
syl |
⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 ( dom 𝑥 × ran 𝑥 ) = ( ∩ 𝑥 ∈ 𝐴 dom 𝑥 × ∩ 𝑥 ∈ 𝐴 ran 𝑥 ) ) |
| 10 |
7 9
|
eqtrd |
⊢ ( 𝜑 → ∩ 𝐴 = ( ∩ 𝑥 ∈ 𝐴 dom 𝑥 × ∩ 𝑥 ∈ 𝐴 ran 𝑥 ) ) |
| 11 |
3 4
|
xpeq12i |
⊢ ( 𝑋 × 𝑌 ) = ( ∩ 𝑥 ∈ 𝐴 dom 𝑥 × ∩ 𝑥 ∈ 𝐴 ran 𝑥 ) |
| 12 |
10 11
|
eqtr4di |
⊢ ( 𝜑 → ∩ 𝐴 = ( 𝑋 × 𝑌 ) ) |