| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relco |
⊢ Rel ( 𝐴 ∘ ( 𝐵 × 𝐶 ) ) |
| 2 |
|
relxp |
⊢ Rel ( 𝐵 × ( 𝐴 “ 𝐶 ) ) |
| 3 |
|
brxp |
⊢ ( 𝑥 ( 𝐵 × 𝐶 ) 𝑧 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) |
| 4 |
3
|
anbi1i |
⊢ ( ( 𝑥 ( 𝐵 × 𝐶 ) 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑧 𝐴 𝑦 ) ) |
| 5 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑧 𝐴 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑧 𝐴 𝑦 ) ) ) |
| 6 |
4 5
|
bitri |
⊢ ( ( 𝑥 ( 𝐵 × 𝐶 ) 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑧 𝐴 𝑦 ) ) ) |
| 7 |
6
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑥 ( 𝐵 × 𝐶 ) 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ∃ 𝑧 ( 𝑥 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑧 𝐴 𝑦 ) ) ) |
| 8 |
|
vex |
⊢ 𝑥 ∈ V |
| 9 |
|
vex |
⊢ 𝑦 ∈ V |
| 10 |
8 9
|
opelco |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ ( 𝐵 × 𝐶 ) ) ↔ ∃ 𝑧 ( 𝑥 ( 𝐵 × 𝐶 ) 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 11 |
9
|
elima2 |
⊢ ( 𝑦 ∈ ( 𝐴 “ 𝐶 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑧 𝐴 𝑦 ) ) |
| 12 |
11
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ ( 𝐴 “ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑧 𝐴 𝑦 ) ) ) |
| 13 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × ( 𝐴 “ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ ( 𝐴 “ 𝐶 ) ) ) |
| 14 |
|
19.42v |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑧 𝐴 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑧 𝐴 𝑦 ) ) ) |
| 15 |
12 13 14
|
3bitr4i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × ( 𝐴 “ 𝐶 ) ) ↔ ∃ 𝑧 ( 𝑥 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑧 𝐴 𝑦 ) ) ) |
| 16 |
7 10 15
|
3bitr4i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ ( 𝐵 × 𝐶 ) ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × ( 𝐴 “ 𝐶 ) ) ) |
| 17 |
1 2 16
|
eqrelriiv |
⊢ ( 𝐴 ∘ ( 𝐵 × 𝐶 ) ) = ( 𝐵 × ( 𝐴 “ 𝐶 ) ) |