Metamath Proof Explorer


Theorem coxp

Description: Composition with a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion coxp ( 𝐴 ∘ ( 𝐵 × 𝐶 ) ) = ( 𝐵 × ( 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 relco Rel ( 𝐴 ∘ ( 𝐵 × 𝐶 ) )
2 relxp Rel ( 𝐵 × ( 𝐴𝐶 ) )
3 brxp ( 𝑥 ( 𝐵 × 𝐶 ) 𝑧 ↔ ( 𝑥𝐵𝑧𝐶 ) )
4 3 anbi1i ( ( 𝑥 ( 𝐵 × 𝐶 ) 𝑧𝑧 𝐴 𝑦 ) ↔ ( ( 𝑥𝐵𝑧𝐶 ) ∧ 𝑧 𝐴 𝑦 ) )
5 anass ( ( ( 𝑥𝐵𝑧𝐶 ) ∧ 𝑧 𝐴 𝑦 ) ↔ ( 𝑥𝐵 ∧ ( 𝑧𝐶𝑧 𝐴 𝑦 ) ) )
6 4 5 bitri ( ( 𝑥 ( 𝐵 × 𝐶 ) 𝑧𝑧 𝐴 𝑦 ) ↔ ( 𝑥𝐵 ∧ ( 𝑧𝐶𝑧 𝐴 𝑦 ) ) )
7 6 exbii ( ∃ 𝑧 ( 𝑥 ( 𝐵 × 𝐶 ) 𝑧𝑧 𝐴 𝑦 ) ↔ ∃ 𝑧 ( 𝑥𝐵 ∧ ( 𝑧𝐶𝑧 𝐴 𝑦 ) ) )
8 vex 𝑥 ∈ V
9 vex 𝑦 ∈ V
10 8 9 opelco ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 ∘ ( 𝐵 × 𝐶 ) ) ↔ ∃ 𝑧 ( 𝑥 ( 𝐵 × 𝐶 ) 𝑧𝑧 𝐴 𝑦 ) )
11 9 elima2 ( 𝑦 ∈ ( 𝐴𝐶 ) ↔ ∃ 𝑧 ( 𝑧𝐶𝑧 𝐴 𝑦 ) )
12 11 anbi2i ( ( 𝑥𝐵𝑦 ∈ ( 𝐴𝐶 ) ) ↔ ( 𝑥𝐵 ∧ ∃ 𝑧 ( 𝑧𝐶𝑧 𝐴 𝑦 ) ) )
13 opelxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × ( 𝐴𝐶 ) ) ↔ ( 𝑥𝐵𝑦 ∈ ( 𝐴𝐶 ) ) )
14 19.42v ( ∃ 𝑧 ( 𝑥𝐵 ∧ ( 𝑧𝐶𝑧 𝐴 𝑦 ) ) ↔ ( 𝑥𝐵 ∧ ∃ 𝑧 ( 𝑧𝐶𝑧 𝐴 𝑦 ) ) )
15 12 13 14 3bitr4i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × ( 𝐴𝐶 ) ) ↔ ∃ 𝑧 ( 𝑥𝐵 ∧ ( 𝑧𝐶𝑧 𝐴 𝑦 ) ) )
16 7 10 15 3bitr4i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 ∘ ( 𝐵 × 𝐶 ) ) ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × ( 𝐴𝐶 ) ) )
17 1 2 16 eqrelriiv ( 𝐴 ∘ ( 𝐵 × 𝐶 ) ) = ( 𝐵 × ( 𝐴𝐶 ) )