Metamath Proof Explorer


Theorem cosn

Description: Composition with an ordered pair singleton. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion cosn ( ( 𝐵𝑈𝐶𝑉 ) → ( 𝐴 ∘ { ⟨ 𝐵 , 𝐶 ⟩ } ) = ( { 𝐵 } × ( 𝐴 “ { 𝐶 } ) ) )

Proof

Step Hyp Ref Expression
1 xpsng ( ( 𝐵𝑈𝐶𝑉 ) → ( { 𝐵 } × { 𝐶 } ) = { ⟨ 𝐵 , 𝐶 ⟩ } )
2 1 coeq2d ( ( 𝐵𝑈𝐶𝑉 ) → ( 𝐴 ∘ ( { 𝐵 } × { 𝐶 } ) ) = ( 𝐴 ∘ { ⟨ 𝐵 , 𝐶 ⟩ } ) )
3 coxp ( 𝐴 ∘ ( { 𝐵 } × { 𝐶 } ) ) = ( { 𝐵 } × ( 𝐴 “ { 𝐶 } ) )
4 2 3 eqtr3di ( ( 𝐵𝑈𝐶𝑉 ) → ( 𝐴 ∘ { ⟨ 𝐵 , 𝐶 ⟩ } ) = ( { 𝐵 } × ( 𝐴 “ { 𝐶 } ) ) )