Metamath Proof Explorer


Theorem cosni

Description: Composition with an ordered pair singleton. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Hypotheses cosni.1 𝐵 ∈ V
cosni.2 𝐶 ∈ V
Assertion cosni ( 𝐴 ∘ { ⟨ 𝐵 , 𝐶 ⟩ } ) = ( { 𝐵 } × ( 𝐴 “ { 𝐶 } ) )

Proof

Step Hyp Ref Expression
1 cosni.1 𝐵 ∈ V
2 cosni.2 𝐶 ∈ V
3 cosn ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 ∘ { ⟨ 𝐵 , 𝐶 ⟩ } ) = ( { 𝐵 } × ( 𝐴 “ { 𝐶 } ) ) )
4 1 2 3 mp2an ( 𝐴 ∘ { ⟨ 𝐵 , 𝐶 ⟩ } ) = ( { 𝐵 } × ( 𝐴 “ { 𝐶 } ) )