Metamath Proof Explorer


Theorem cosni

Description: Composition with an ordered pair singleton. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Hypotheses cosni.1
|- B e. _V
cosni.2
|- C e. _V
Assertion cosni
|- ( A o. { <. B , C >. } ) = ( { B } X. ( A " { C } ) )

Proof

Step Hyp Ref Expression
1 cosni.1
 |-  B e. _V
2 cosni.2
 |-  C e. _V
3 cosn
 |-  ( ( B e. _V /\ C e. _V ) -> ( A o. { <. B , C >. } ) = ( { B } X. ( A " { C } ) ) )
4 1 2 3 mp2an
 |-  ( A o. { <. B , C >. } ) = ( { B } X. ( A " { C } ) )