Metamath Proof Explorer


Theorem cosn

Description: Composition with an ordered pair singleton. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion cosn
|- ( ( B e. U /\ C e. V ) -> ( A o. { <. B , C >. } ) = ( { B } X. ( A " { C } ) ) )

Proof

Step Hyp Ref Expression
1 xpsng
 |-  ( ( B e. U /\ C e. V ) -> ( { B } X. { C } ) = { <. B , C >. } )
2 1 coeq2d
 |-  ( ( B e. U /\ C e. V ) -> ( A o. ( { B } X. { C } ) ) = ( A o. { <. B , C >. } ) )
3 coxp
 |-  ( A o. ( { B } X. { C } ) ) = ( { B } X. ( A " { C } ) )
4 2 3 eqtr3di
 |-  ( ( B e. U /\ C e. V ) -> ( A o. { <. B , C >. } ) = ( { B } X. ( A " { C } ) ) )