Metamath Proof Explorer


Theorem cosni

Description: Composition with an ordered pair singleton. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Hypotheses cosni.1 B V
cosni.2 C V
Assertion cosni A B C = B × A C

Proof

Step Hyp Ref Expression
1 cosni.1 B V
2 cosni.2 C V
3 cosn B V C V A B C = B × A C
4 1 2 3 mp2an A B C = B × A C