Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
ZF Set Theory - add the Axiom of Power Sets
Relations
coxp
Next ⟩
cosn
Metamath Proof Explorer
Ascii
Unicode
Theorem
coxp
Description:
Composition with a Cartesian product.
(Contributed by
Zhi Wang
, 6-Oct-2025)
Ref
Expression
Assertion
coxp
⊢
A
∘
B
×
C
=
B
×
A
C
Proof
Step
Hyp
Ref
Expression
1
relco
⊢
Rel
⁡
A
∘
B
×
C
2
relxp
⊢
Rel
⁡
B
×
A
C
3
brxp
⊢
x
B
×
C
z
↔
x
∈
B
∧
z
∈
C
4
3
anbi1i
⊢
x
B
×
C
z
∧
z
A
y
↔
x
∈
B
∧
z
∈
C
∧
z
A
y
5
anass
⊢
x
∈
B
∧
z
∈
C
∧
z
A
y
↔
x
∈
B
∧
z
∈
C
∧
z
A
y
6
4
5
bitri
⊢
x
B
×
C
z
∧
z
A
y
↔
x
∈
B
∧
z
∈
C
∧
z
A
y
7
6
exbii
⊢
∃
z
x
B
×
C
z
∧
z
A
y
↔
∃
z
x
∈
B
∧
z
∈
C
∧
z
A
y
8
vex
⊢
x
∈
V
9
vex
⊢
y
∈
V
10
8
9
opelco
⊢
x
y
∈
A
∘
B
×
C
↔
∃
z
x
B
×
C
z
∧
z
A
y
11
9
elima2
⊢
y
∈
A
C
↔
∃
z
z
∈
C
∧
z
A
y
12
11
anbi2i
⊢
x
∈
B
∧
y
∈
A
C
↔
x
∈
B
∧
∃
z
z
∈
C
∧
z
A
y
13
opelxp
⊢
x
y
∈
B
×
A
C
↔
x
∈
B
∧
y
∈
A
C
14
19.42v
⊢
∃
z
x
∈
B
∧
z
∈
C
∧
z
A
y
↔
x
∈
B
∧
∃
z
z
∈
C
∧
z
A
y
15
12
13
14
3bitr4i
⊢
x
y
∈
B
×
A
C
↔
∃
z
x
∈
B
∧
z
∈
C
∧
z
A
y
16
7
10
15
3bitr4i
⊢
x
y
∈
A
∘
B
×
C
↔
x
y
∈
B
×
A
C
17
1
2
16
eqrelriiv
⊢
A
∘
B
×
C
=
B
×
A
C