Metamath Proof Explorer


Theorem iinxp

Description: Indexed intersection of Cartesian products is the Cartesian product of indexed intersections. See also inxp and intxp . (Contributed by Zhi Wang, 30-Oct-2025)

Ref Expression
Assertion iinxp ( 𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐵 × 𝐶 ) = ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐶 ) )

Proof

Step Hyp Ref Expression
1 relxp Rel ( 𝐵 × 𝐶 )
2 1 rgenw 𝑥𝐴 Rel ( 𝐵 × 𝐶 )
3 r19.2z ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 Rel ( 𝐵 × 𝐶 ) ) → ∃ 𝑥𝐴 Rel ( 𝐵 × 𝐶 ) )
4 2 3 mpan2 ( 𝐴 ≠ ∅ → ∃ 𝑥𝐴 Rel ( 𝐵 × 𝐶 ) )
5 reliin ( ∃ 𝑥𝐴 Rel ( 𝐵 × 𝐶 ) → Rel 𝑥𝐴 ( 𝐵 × 𝐶 ) )
6 4 5 syl ( 𝐴 ≠ ∅ → Rel 𝑥𝐴 ( 𝐵 × 𝐶 ) )
7 relxp Rel ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐶 )
8 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 ) )
9 8 elv ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 )
10 eliin ( 𝑧 ∈ V → ( 𝑧 𝑥𝐴 𝐶 ↔ ∀ 𝑥𝐴 𝑧𝐶 ) )
11 10 elv ( 𝑧 𝑥𝐴 𝐶 ↔ ∀ 𝑥𝐴 𝑧𝐶 )
12 9 11 anbi12i ( ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐶 ) ↔ ( ∀ 𝑥𝐴 𝑦𝐵 ∧ ∀ 𝑥𝐴 𝑧𝐶 ) )
13 opelxp ( ⟨ 𝑦 , 𝑧 ⟩ ∈ ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐶 ) ↔ ( 𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐶 ) )
14 opex 𝑦 , 𝑧 ⟩ ∈ V
15 eliin ( ⟨ 𝑦 , 𝑧 ⟩ ∈ V → ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝐴 ( 𝐵 × 𝐶 ) ↔ ∀ 𝑥𝐴𝑦 , 𝑧 ⟩ ∈ ( 𝐵 × 𝐶 ) ) )
16 14 15 ax-mp ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝐴 ( 𝐵 × 𝐶 ) ↔ ∀ 𝑥𝐴𝑦 , 𝑧 ⟩ ∈ ( 𝐵 × 𝐶 ) )
17 opelxp ( ⟨ 𝑦 , 𝑧 ⟩ ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝑦𝐵𝑧𝐶 ) )
18 17 ralbii ( ∀ 𝑥𝐴𝑦 , 𝑧 ⟩ ∈ ( 𝐵 × 𝐶 ) ↔ ∀ 𝑥𝐴 ( 𝑦𝐵𝑧𝐶 ) )
19 r19.26 ( ∀ 𝑥𝐴 ( 𝑦𝐵𝑧𝐶 ) ↔ ( ∀ 𝑥𝐴 𝑦𝐵 ∧ ∀ 𝑥𝐴 𝑧𝐶 ) )
20 16 18 19 3bitri ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝐴 ( 𝐵 × 𝐶 ) ↔ ( ∀ 𝑥𝐴 𝑦𝐵 ∧ ∀ 𝑥𝐴 𝑧𝐶 ) )
21 12 13 20 3bitr4ri ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝐴 ( 𝐵 × 𝐶 ) ↔ ⟨ 𝑦 , 𝑧 ⟩ ∈ ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐶 ) )
22 21 eqrelriv ( ( Rel 𝑥𝐴 ( 𝐵 × 𝐶 ) ∧ Rel ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐶 ) ) → 𝑥𝐴 ( 𝐵 × 𝐶 ) = ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐶 ) )
23 6 7 22 sylancl ( 𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐵 × 𝐶 ) = ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐶 ) )