Metamath Proof Explorer


Theorem iinxp

Description: Indexed intersection of Cartesian products is the Cartesian product of indexed intersections. See also inxp and intxp . (Contributed by Zhi Wang, 30-Oct-2025)

Ref Expression
Assertion iinxp A x A B × C = x A B × x A C

Proof

Step Hyp Ref Expression
1 relxp Rel B × C
2 1 rgenw x A Rel B × C
3 r19.2z A x A Rel B × C x A Rel B × C
4 2 3 mpan2 A x A Rel B × C
5 reliin x A Rel B × C Rel x A B × C
6 4 5 syl A Rel x A B × C
7 relxp Rel x A B × x A C
8 eliin y V y x A B x A y B
9 8 elv y x A B x A y B
10 eliin z V z x A C x A z C
11 10 elv z x A C x A z C
12 9 11 anbi12i y x A B z x A C x A y B x A z C
13 opelxp y z x A B × x A C y x A B z x A C
14 opex y z V
15 eliin y z V y z x A B × C x A y z B × C
16 14 15 ax-mp y z x A B × C x A y z B × C
17 opelxp y z B × C y B z C
18 17 ralbii x A y z B × C x A y B z C
19 r19.26 x A y B z C x A y B x A z C
20 16 18 19 3bitri y z x A B × C x A y B x A z C
21 12 13 20 3bitr4ri y z x A B × C y z x A B × x A C
22 21 eqrelriv Rel x A B × C Rel x A B × x A C x A B × C = x A B × x A C
23 6 7 22 sylancl A x A B × C = x A B × x A C