Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | iooltub | |- ( ( A e. RR* /\ B e. RR* /\ C e. ( A (,) B ) ) -> C < B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) <-> ( C e. RR /\ A < C /\ C < B ) ) ) |
|
2 | simp3 | |- ( ( C e. RR /\ A < C /\ C < B ) -> C < B ) |
|
3 | 1 2 | syl6bi | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) -> C < B ) ) |
4 | 3 | 3impia | |- ( ( A e. RR* /\ B e. RR* /\ C e. ( A (,) B ) ) -> C < B ) |