Metamath Proof Explorer


Theorem iooltub

Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion iooltub A*B*CABC<B

Proof

Step Hyp Ref Expression
1 elioo2 A*B*CABCA<CC<B
2 simp3 CA<CC<BC<B
3 1 2 syl6bi A*B*CABC<B
4 3 3impia A*B*CABC<B