Metamath Proof Explorer


Theorem iooltub

Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion iooltub A * B * C A B C < B

Proof

Step Hyp Ref Expression
1 elioo2 A * B * C A B C A < C C < B
2 simp3 C A < C C < B C < B
3 1 2 syl6bi A * B * C A B C < B
4 3 3impia A * B * C A B C < B