Database
REAL AND COMPLEX NUMBERS
Order sets
Real number intervals
elioo2
Next ⟩
elioc1
Metamath Proof Explorer
Ascii
Unicode
Theorem
elioo2
Description:
Membership in an open interval of extended reals.
(Contributed by
NM
, 6-Feb-2007)
Ref
Expression
Assertion
elioo2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
C
∈
A
B
↔
C
∈
ℝ
∧
A
<
C
∧
C
<
B
Proof
Step
Hyp
Ref
Expression
1
iooval2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
B
=
x
∈
ℝ
|
A
<
x
∧
x
<
B
2
1
eleq2d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
C
∈
A
B
↔
C
∈
x
∈
ℝ
|
A
<
x
∧
x
<
B
3
breq2
⊢
x
=
C
→
A
<
x
↔
A
<
C
4
breq1
⊢
x
=
C
→
x
<
B
↔
C
<
B
5
3
4
anbi12d
⊢
x
=
C
→
A
<
x
∧
x
<
B
↔
A
<
C
∧
C
<
B
6
5
elrab
⊢
C
∈
x
∈
ℝ
|
A
<
x
∧
x
<
B
↔
C
∈
ℝ
∧
A
<
C
∧
C
<
B
7
3anass
⊢
C
∈
ℝ
∧
A
<
C
∧
C
<
B
↔
C
∈
ℝ
∧
A
<
C
∧
C
<
B
8
6
7
bitr4i
⊢
C
∈
x
∈
ℝ
|
A
<
x
∧
x
<
B
↔
C
∈
ℝ
∧
A
<
C
∧
C
<
B
9
2
8
bitrdi
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
C
∈
A
B
↔
C
∈
ℝ
∧
A
<
C
∧
C
<
B