Metamath Proof Explorer


Theorem elioo2

Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007)

Ref Expression
Assertion elioo2 A*B*CABCA<CC<B

Proof

Step Hyp Ref Expression
1 iooval2 A*B*AB=x|A<xx<B
2 1 eleq2d A*B*CABCx|A<xx<B
3 breq2 x=CA<xA<C
4 breq1 x=Cx<BC<B
5 3 4 anbi12d x=CA<xx<BA<CC<B
6 5 elrab Cx|A<xx<BCA<CC<B
7 3anass CA<CC<BCA<CC<B
8 6 7 bitr4i Cx|A<xx<BCA<CC<B
9 2 8 bitrdi A*B*CABCA<CC<B