Metamath Proof Explorer


Theorem elioo2

Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007)

Ref Expression
Assertion elioo2 A * B * C A B C A < C C < B

Proof

Step Hyp Ref Expression
1 iooval2 A * B * A B = x | A < x x < B
2 1 eleq2d A * B * C A B C x | A < x x < B
3 breq2 x = C A < x A < C
4 breq1 x = C x < B C < B
5 3 4 anbi12d x = C A < x x < B A < C C < B
6 5 elrab C x | A < x x < B C A < C C < B
7 3anass C A < C C < B C A < C C < B
8 6 7 bitr4i C x | A < x x < B C A < C C < B
9 2 8 bitrdi A * B * C A B C A < C C < B