Metamath Proof Explorer


Theorem iota0def

Description: Example for a defined iota being the empty set, i.e., A. y x C_ y is a wff satisfied by a unique value x , namely x = (/) (the empty set is the one and only set which is a subset of every set). (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion iota0def
|- ( iota x A. y x C_ y ) = (/)

Proof

Step Hyp Ref Expression
1 0ex
 |-  (/) e. _V
2 al0ssb
 |-  ( A. y x C_ y <-> x = (/) )
3 2 a1i
 |-  ( ( (/) e. _V /\ (/) e. _V ) -> ( A. y x C_ y <-> x = (/) ) )
4 3 iota5
 |-  ( ( (/) e. _V /\ (/) e. _V ) -> ( iota x A. y x C_ y ) = (/) )
5 1 1 4 mp2an
 |-  ( iota x A. y x C_ y ) = (/)