Description: Theorem *14.2 in WhiteheadRussell p. 189. (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotaequ | |- ( iota x x = y ) = y |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval | |- ( A. x ( x = y <-> x = y ) -> ( iota x x = y ) = y ) |
|
| 2 | biid | |- ( x = y <-> x = y ) |
|
| 3 | 1 2 | mpg | |- ( iota x x = y ) = y |