Description: Theorem *14.2 in WhiteheadRussell p. 189. (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotaequ | ⊢ ( ℩ 𝑥 𝑥 = 𝑦 ) = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝑥 = 𝑦 ) = 𝑦 ) | |
| 2 | biid | ⊢ ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) | |
| 3 | 1 2 | mpg | ⊢ ( ℩ 𝑥 𝑥 = 𝑦 ) = 𝑦 |