Metamath Proof Explorer


Theorem iscld2

Description: A subset of the underlying set of a topology is closed iff its complement is open. (Contributed by NM, 4-Oct-2006)

Ref Expression
Hypothesis iscld.1
|- X = U. J
Assertion iscld2
|- ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( X \ S ) e. J ) )

Proof

Step Hyp Ref Expression
1 iscld.1
 |-  X = U. J
2 1 iscld
 |-  ( J e. Top -> ( S e. ( Clsd ` J ) <-> ( S C_ X /\ ( X \ S ) e. J ) ) )
3 2 baibd
 |-  ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( X \ S ) e. J ) )