Metamath Proof Explorer


Theorem iscnrm3lem4

Description: Lemma for iscnrm3lem5 and iscnrm3r . (Contributed by Zhi Wang, 4-Sep-2024)

Ref Expression
Hypotheses iscnrm3lem4.1
|- ( et -> ( ps -> ze ) )
iscnrm3lem4.2
|- ( ( ph /\ ch /\ th ) -> et )
iscnrm3lem4.3
|- ( ( ph /\ ch /\ th ) -> ( ze -> ta ) )
Assertion iscnrm3lem4
|- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )

Proof

Step Hyp Ref Expression
1 iscnrm3lem4.1
 |-  ( et -> ( ps -> ze ) )
2 iscnrm3lem4.2
 |-  ( ( ph /\ ch /\ th ) -> et )
3 iscnrm3lem4.3
 |-  ( ( ph /\ ch /\ th ) -> ( ze -> ta ) )
4 iscnrm3lem3
 |-  ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) <-> ( ( ph /\ ch /\ th ) /\ ps ) )
5 2 1 syl
 |-  ( ( ph /\ ch /\ th ) -> ( ps -> ze ) )
6 5 3 syld
 |-  ( ( ph /\ ch /\ th ) -> ( ps -> ta ) )
7 6 imp
 |-  ( ( ( ph /\ ch /\ th ) /\ ps ) -> ta )
8 4 7 sylbi
 |-  ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) -> ta )
9 8 exp43
 |-  ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )