Step |
Hyp |
Ref |
Expression |
1 |
|
iscnrm3lem4.1 |
|- ( et -> ( ps -> ze ) ) |
2 |
|
iscnrm3lem4.2 |
|- ( ( ph /\ ch /\ th ) -> et ) |
3 |
|
iscnrm3lem4.3 |
|- ( ( ph /\ ch /\ th ) -> ( ze -> ta ) ) |
4 |
|
iscnrm3lem3 |
|- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) <-> ( ( ph /\ ch /\ th ) /\ ps ) ) |
5 |
2 1
|
syl |
|- ( ( ph /\ ch /\ th ) -> ( ps -> ze ) ) |
6 |
5 3
|
syld |
|- ( ( ph /\ ch /\ th ) -> ( ps -> ta ) ) |
7 |
6
|
imp |
|- ( ( ( ph /\ ch /\ th ) /\ ps ) -> ta ) |
8 |
4 7
|
sylbi |
|- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) -> ta ) |
9 |
8
|
exp43 |
|- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) ) |