Metamath Proof Explorer


Theorem iscnrm3lem5

Description: Lemma for iscnrm3l . (Contributed by Zhi Wang, 3-Sep-2024)

Ref Expression
Hypotheses iscnrm3lem5.1
|- ( ( x = S /\ y = T ) -> ( ph <-> ps ) )
iscnrm3lem5.2
|- ( ( x = S /\ y = T ) -> ( ch <-> th ) )
iscnrm3lem5.3
|- ( ( ta /\ et /\ ze ) -> ( S e. V /\ T e. W ) )
iscnrm3lem5.4
|- ( ( ta /\ et /\ ze ) -> ( ( ps -> th ) -> si ) )
Assertion iscnrm3lem5
|- ( ta -> ( A. x e. V A. y e. W ( ph -> ch ) -> ( et -> ( ze -> si ) ) ) )

Proof

Step Hyp Ref Expression
1 iscnrm3lem5.1
 |-  ( ( x = S /\ y = T ) -> ( ph <-> ps ) )
2 iscnrm3lem5.2
 |-  ( ( x = S /\ y = T ) -> ( ch <-> th ) )
3 iscnrm3lem5.3
 |-  ( ( ta /\ et /\ ze ) -> ( S e. V /\ T e. W ) )
4 iscnrm3lem5.4
 |-  ( ( ta /\ et /\ ze ) -> ( ( ps -> th ) -> si ) )
5 1 2 imbi12d
 |-  ( ( x = S /\ y = T ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) )
6 5 rspc2gv
 |-  ( ( S e. V /\ T e. W ) -> ( A. x e. V A. y e. W ( ph -> ch ) -> ( ps -> th ) ) )
7 6 3 4 iscnrm3lem4
 |-  ( ta -> ( A. x e. V A. y e. W ( ph -> ch ) -> ( et -> ( ze -> si ) ) ) )