Description: Lemma for iscnrm3l . (Contributed by Zhi Wang, 3-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iscnrm3lem5.1 | |- ( ( x = S /\ y = T ) -> ( ph <-> ps ) ) |
|
iscnrm3lem5.2 | |- ( ( x = S /\ y = T ) -> ( ch <-> th ) ) |
||
iscnrm3lem5.3 | |- ( ( ta /\ et /\ ze ) -> ( S e. V /\ T e. W ) ) |
||
iscnrm3lem5.4 | |- ( ( ta /\ et /\ ze ) -> ( ( ps -> th ) -> si ) ) |
||
Assertion | iscnrm3lem5 | |- ( ta -> ( A. x e. V A. y e. W ( ph -> ch ) -> ( et -> ( ze -> si ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnrm3lem5.1 | |- ( ( x = S /\ y = T ) -> ( ph <-> ps ) ) |
|
2 | iscnrm3lem5.2 | |- ( ( x = S /\ y = T ) -> ( ch <-> th ) ) |
|
3 | iscnrm3lem5.3 | |- ( ( ta /\ et /\ ze ) -> ( S e. V /\ T e. W ) ) |
|
4 | iscnrm3lem5.4 | |- ( ( ta /\ et /\ ze ) -> ( ( ps -> th ) -> si ) ) |
|
5 | 1 2 | imbi12d | |- ( ( x = S /\ y = T ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) |
6 | 5 | rspc2gv | |- ( ( S e. V /\ T e. W ) -> ( A. x e. V A. y e. W ( ph -> ch ) -> ( ps -> th ) ) ) |
7 | 6 3 4 | iscnrm3lem4 | |- ( ta -> ( A. x e. V A. y e. W ( ph -> ch ) -> ( et -> ( ze -> si ) ) ) ) |