| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscnrm3lem5.1 |
|- ( ( x = S /\ y = T ) -> ( ph <-> ps ) ) |
| 2 |
|
iscnrm3lem5.2 |
|- ( ( x = S /\ y = T ) -> ( ch <-> th ) ) |
| 3 |
|
iscnrm3lem5.3 |
|- ( ( ta /\ et /\ ze ) -> ( S e. V /\ T e. W ) ) |
| 4 |
|
iscnrm3lem5.4 |
|- ( ( ta /\ et /\ ze ) -> ( ( ps -> th ) -> si ) ) |
| 5 |
1 2
|
imbi12d |
|- ( ( x = S /\ y = T ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) |
| 6 |
5
|
rspc2gv |
|- ( ( S e. V /\ T e. W ) -> ( A. x e. V A. y e. W ( ph -> ch ) -> ( ps -> th ) ) ) |
| 7 |
6 3 4
|
iscnrm3lem4 |
|- ( ta -> ( A. x e. V A. y e. W ( ph -> ch ) -> ( et -> ( ze -> si ) ) ) ) |