Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( s = C /\ t = D ) -> s = C ) |
2 |
|
simpr |
|- ( ( s = C /\ t = D ) -> t = D ) |
3 |
2
|
fveq2d |
|- ( ( s = C /\ t = D ) -> ( ( cls ` J ) ` t ) = ( ( cls ` J ) ` D ) ) |
4 |
1 3
|
ineq12d |
|- ( ( s = C /\ t = D ) -> ( s i^i ( ( cls ` J ) ` t ) ) = ( C i^i ( ( cls ` J ) ` D ) ) ) |
5 |
4
|
eqeq1d |
|- ( ( s = C /\ t = D ) -> ( ( s i^i ( ( cls ` J ) ` t ) ) = (/) <-> ( C i^i ( ( cls ` J ) ` D ) ) = (/) ) ) |
6 |
1
|
fveq2d |
|- ( ( s = C /\ t = D ) -> ( ( cls ` J ) ` s ) = ( ( cls ` J ) ` C ) ) |
7 |
6 2
|
ineq12d |
|- ( ( s = C /\ t = D ) -> ( ( ( cls ` J ) ` s ) i^i t ) = ( ( ( cls ` J ) ` C ) i^i D ) ) |
8 |
7
|
eqeq1d |
|- ( ( s = C /\ t = D ) -> ( ( ( ( cls ` J ) ` s ) i^i t ) = (/) <-> ( ( ( cls ` J ) ` C ) i^i D ) = (/) ) ) |
9 |
5 8
|
anbi12d |
|- ( ( s = C /\ t = D ) -> ( ( ( s i^i ( ( cls ` J ) ` t ) ) = (/) /\ ( ( ( cls ` J ) ` s ) i^i t ) = (/) ) <-> ( ( C i^i ( ( cls ` J ) ` D ) ) = (/) /\ ( ( ( cls ` J ) ` C ) i^i D ) = (/) ) ) ) |
10 |
1
|
sseq1d |
|- ( ( s = C /\ t = D ) -> ( s C_ n <-> C C_ n ) ) |
11 |
2
|
sseq1d |
|- ( ( s = C /\ t = D ) -> ( t C_ m <-> D C_ m ) ) |
12 |
10 11
|
3anbi12d |
|- ( ( s = C /\ t = D ) -> ( ( s C_ n /\ t C_ m /\ ( n i^i m ) = (/) ) <-> ( C C_ n /\ D C_ m /\ ( n i^i m ) = (/) ) ) ) |
13 |
12
|
2rexbidv |
|- ( ( s = C /\ t = D ) -> ( E. n e. J E. m e. J ( s C_ n /\ t C_ m /\ ( n i^i m ) = (/) ) <-> E. n e. J E. m e. J ( C C_ n /\ D C_ m /\ ( n i^i m ) = (/) ) ) ) |
14 |
|
iscnrm3llem1 |
|- ( ( J e. Top /\ ( Z e. ~P U. J /\ C e. ( Clsd ` ( J |`t Z ) ) /\ D e. ( Clsd ` ( J |`t Z ) ) ) /\ ( C i^i D ) = (/) ) -> ( C e. ~P U. J /\ D e. ~P U. J ) ) |
15 |
|
simp1 |
|- ( ( J e. Top /\ ( Z e. ~P U. J /\ C e. ( Clsd ` ( J |`t Z ) ) /\ D e. ( Clsd ` ( J |`t Z ) ) ) /\ ( C i^i D ) = (/) ) -> J e. Top ) |
16 |
|
eqidd |
|- ( ( J e. Top /\ ( Z e. ~P U. J /\ C e. ( Clsd ` ( J |`t Z ) ) /\ D e. ( Clsd ` ( J |`t Z ) ) ) /\ ( C i^i D ) = (/) ) -> U. J = U. J ) |
17 |
|
simp21 |
|- ( ( J e. Top /\ ( Z e. ~P U. J /\ C e. ( Clsd ` ( J |`t Z ) ) /\ D e. ( Clsd ` ( J |`t Z ) ) ) /\ ( C i^i D ) = (/) ) -> Z e. ~P U. J ) |
18 |
17
|
elpwid |
|- ( ( J e. Top /\ ( Z e. ~P U. J /\ C e. ( Clsd ` ( J |`t Z ) ) /\ D e. ( Clsd ` ( J |`t Z ) ) ) /\ ( C i^i D ) = (/) ) -> Z C_ U. J ) |
19 |
|
eqidd |
|- ( ( J e. Top /\ ( Z e. ~P U. J /\ C e. ( Clsd ` ( J |`t Z ) ) /\ D e. ( Clsd ` ( J |`t Z ) ) ) /\ ( C i^i D ) = (/) ) -> ( J |`t Z ) = ( J |`t Z ) ) |
20 |
|
simp22 |
|- ( ( J e. Top /\ ( Z e. ~P U. J /\ C e. ( Clsd ` ( J |`t Z ) ) /\ D e. ( Clsd ` ( J |`t Z ) ) ) /\ ( C i^i D ) = (/) ) -> C e. ( Clsd ` ( J |`t Z ) ) ) |
21 |
|
simp3 |
|- ( ( J e. Top /\ ( Z e. ~P U. J /\ C e. ( Clsd ` ( J |`t Z ) ) /\ D e. ( Clsd ` ( J |`t Z ) ) ) /\ ( C i^i D ) = (/) ) -> ( C i^i D ) = (/) ) |
22 |
|
simp23 |
|- ( ( J e. Top /\ ( Z e. ~P U. J /\ C e. ( Clsd ` ( J |`t Z ) ) /\ D e. ( Clsd ` ( J |`t Z ) ) ) /\ ( C i^i D ) = (/) ) -> D e. ( Clsd ` ( J |`t Z ) ) ) |
23 |
15 16 18 19 20 21 22
|
restclssep |
|- ( ( J e. Top /\ ( Z e. ~P U. J /\ C e. ( Clsd ` ( J |`t Z ) ) /\ D e. ( Clsd ` ( J |`t Z ) ) ) /\ ( C i^i D ) = (/) ) -> ( ( C i^i ( ( cls ` J ) ` D ) ) = (/) /\ ( ( ( cls ` J ) ` C ) i^i D ) = (/) ) ) |
24 |
|
iscnrm3llem2 |
|- ( ( J e. Top /\ ( Z e. ~P U. J /\ C e. ( Clsd ` ( J |`t Z ) ) /\ D e. ( Clsd ` ( J |`t Z ) ) ) /\ ( C i^i D ) = (/) ) -> ( E. n e. J E. m e. J ( C C_ n /\ D C_ m /\ ( n i^i m ) = (/) ) -> E. l e. ( J |`t Z ) E. k e. ( J |`t Z ) ( C C_ l /\ D C_ k /\ ( l i^i k ) = (/) ) ) ) |
25 |
23 24
|
embantd |
|- ( ( J e. Top /\ ( Z e. ~P U. J /\ C e. ( Clsd ` ( J |`t Z ) ) /\ D e. ( Clsd ` ( J |`t Z ) ) ) /\ ( C i^i D ) = (/) ) -> ( ( ( ( C i^i ( ( cls ` J ) ` D ) ) = (/) /\ ( ( ( cls ` J ) ` C ) i^i D ) = (/) ) -> E. n e. J E. m e. J ( C C_ n /\ D C_ m /\ ( n i^i m ) = (/) ) ) -> E. l e. ( J |`t Z ) E. k e. ( J |`t Z ) ( C C_ l /\ D C_ k /\ ( l i^i k ) = (/) ) ) ) |
26 |
9 13 14 25
|
iscnrm3lem5 |
|- ( J e. Top -> ( A. s e. ~P U. J A. t e. ~P U. J ( ( ( s i^i ( ( cls ` J ) ` t ) ) = (/) /\ ( ( ( cls ` J ) ` s ) i^i t ) = (/) ) -> E. n e. J E. m e. J ( s C_ n /\ t C_ m /\ ( n i^i m ) = (/) ) ) -> ( ( Z e. ~P U. J /\ C e. ( Clsd ` ( J |`t Z ) ) /\ D e. ( Clsd ` ( J |`t Z ) ) ) -> ( ( C i^i D ) = (/) -> E. l e. ( J |`t Z ) E. k e. ( J |`t Z ) ( C C_ l /\ D C_ k /\ ( l i^i k ) = (/) ) ) ) ) ) |