Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑠 = 𝐶 ∧ 𝑡 = 𝐷 ) → 𝑠 = 𝐶 ) |
2 |
|
simpr |
⊢ ( ( 𝑠 = 𝐶 ∧ 𝑡 = 𝐷 ) → 𝑡 = 𝐷 ) |
3 |
2
|
fveq2d |
⊢ ( ( 𝑠 = 𝐶 ∧ 𝑡 = 𝐷 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) = ( ( cls ‘ 𝐽 ) ‘ 𝐷 ) ) |
4 |
1 3
|
ineq12d |
⊢ ( ( 𝑠 = 𝐶 ∧ 𝑡 = 𝐷 ) → ( 𝑠 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) = ( 𝐶 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝐷 ) ) ) |
5 |
4
|
eqeq1d |
⊢ ( ( 𝑠 = 𝐶 ∧ 𝑡 = 𝐷 ) → ( ( 𝑠 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) = ∅ ↔ ( 𝐶 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝐷 ) ) = ∅ ) ) |
6 |
1
|
fveq2d |
⊢ ( ( 𝑠 = 𝐶 ∧ 𝑡 = 𝐷 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) = ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ) |
7 |
6 2
|
ineq12d |
⊢ ( ( 𝑠 = 𝐶 ∧ 𝑡 = 𝐷 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ∩ 𝑡 ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ∩ 𝐷 ) ) |
8 |
7
|
eqeq1d |
⊢ ( ( 𝑠 = 𝐶 ∧ 𝑡 = 𝐷 ) → ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ∩ 𝑡 ) = ∅ ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ∩ 𝐷 ) = ∅ ) ) |
9 |
5 8
|
anbi12d |
⊢ ( ( 𝑠 = 𝐶 ∧ 𝑡 = 𝐷 ) → ( ( ( 𝑠 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) = ∅ ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ∩ 𝑡 ) = ∅ ) ↔ ( ( 𝐶 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝐷 ) ) = ∅ ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ∩ 𝐷 ) = ∅ ) ) ) |
10 |
1
|
sseq1d |
⊢ ( ( 𝑠 = 𝐶 ∧ 𝑡 = 𝐷 ) → ( 𝑠 ⊆ 𝑛 ↔ 𝐶 ⊆ 𝑛 ) ) |
11 |
2
|
sseq1d |
⊢ ( ( 𝑠 = 𝐶 ∧ 𝑡 = 𝐷 ) → ( 𝑡 ⊆ 𝑚 ↔ 𝐷 ⊆ 𝑚 ) ) |
12 |
10 11
|
3anbi12d |
⊢ ( ( 𝑠 = 𝐶 ∧ 𝑡 = 𝐷 ) → ( ( 𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ↔ ( 𝐶 ⊆ 𝑛 ∧ 𝐷 ⊆ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) |
13 |
12
|
2rexbidv |
⊢ ( ( 𝑠 = 𝐶 ∧ 𝑡 = 𝐷 ) → ( ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ↔ ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝐶 ⊆ 𝑛 ∧ 𝐷 ⊆ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) |
14 |
|
iscnrm3llem1 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ∧ 𝐷 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → ( 𝐶 ∈ 𝒫 ∪ 𝐽 ∧ 𝐷 ∈ 𝒫 ∪ 𝐽 ) ) |
15 |
|
simp1 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ∧ 𝐷 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → 𝐽 ∈ Top ) |
16 |
|
eqidd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ∧ 𝐷 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → ∪ 𝐽 = ∪ 𝐽 ) |
17 |
|
simp21 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ∧ 𝐷 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → 𝑍 ∈ 𝒫 ∪ 𝐽 ) |
18 |
17
|
elpwid |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ∧ 𝐷 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → 𝑍 ⊆ ∪ 𝐽 ) |
19 |
|
eqidd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ∧ 𝐷 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → ( 𝐽 ↾t 𝑍 ) = ( 𝐽 ↾t 𝑍 ) ) |
20 |
|
simp22 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ∧ 𝐷 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → 𝐶 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ) |
21 |
|
simp3 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ∧ 𝐷 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
22 |
|
simp23 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ∧ 𝐷 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → 𝐷 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ) |
23 |
15 16 18 19 20 21 22
|
restclssep |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ∧ 𝐷 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → ( ( 𝐶 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝐷 ) ) = ∅ ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ∩ 𝐷 ) = ∅ ) ) |
24 |
|
iscnrm3llem2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ∧ 𝐷 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → ( ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝐶 ⊆ 𝑛 ∧ 𝐷 ⊆ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) → ∃ 𝑙 ∈ ( 𝐽 ↾t 𝑍 ) ∃ 𝑘 ∈ ( 𝐽 ↾t 𝑍 ) ( 𝐶 ⊆ 𝑙 ∧ 𝐷 ⊆ 𝑘 ∧ ( 𝑙 ∩ 𝑘 ) = ∅ ) ) ) |
25 |
23 24
|
embantd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ∧ 𝐷 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → ( ( ( ( 𝐶 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝐷 ) ) = ∅ ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ∩ 𝐷 ) = ∅ ) → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝐶 ⊆ 𝑛 ∧ 𝐷 ⊆ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) → ∃ 𝑙 ∈ ( 𝐽 ↾t 𝑍 ) ∃ 𝑘 ∈ ( 𝐽 ↾t 𝑍 ) ( 𝐶 ⊆ 𝑙 ∧ 𝐷 ⊆ 𝑘 ∧ ( 𝑙 ∩ 𝑘 ) = ∅ ) ) ) |
26 |
9 13 14 25
|
iscnrm3lem5 |
⊢ ( 𝐽 ∈ Top → ( ∀ 𝑠 ∈ 𝒫 ∪ 𝐽 ∀ 𝑡 ∈ 𝒫 ∪ 𝐽 ( ( ( 𝑠 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) = ∅ ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ∩ 𝑡 ) = ∅ ) → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) → ( ( 𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ∧ 𝐷 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑍 ) ) ) → ( ( 𝐶 ∩ 𝐷 ) = ∅ → ∃ 𝑙 ∈ ( 𝐽 ↾t 𝑍 ) ∃ 𝑘 ∈ ( 𝐽 ↾t 𝑍 ) ( 𝐶 ⊆ 𝑙 ∧ 𝐷 ⊆ 𝑘 ∧ ( 𝑙 ∩ 𝑘 ) = ∅ ) ) ) ) ) |