| Step |
Hyp |
Ref |
Expression |
| 1 |
|
restcls2.1 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 2 |
|
restcls2.2 |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 3 |
|
restcls2.3 |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 4 |
|
restcls2.4 |
⊢ ( 𝜑 → 𝐾 = ( 𝐽 ↾t 𝑌 ) ) |
| 5 |
|
restcls2.5 |
⊢ ( 𝜑 → 𝑆 ∈ ( Clsd ‘ 𝐾 ) ) |
| 6 |
|
restclsseplem.6 |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = ∅ ) |
| 7 |
|
restclssep.7 |
⊢ ( 𝜑 → 𝑇 ∈ ( Clsd ‘ 𝐾 ) ) |
| 8 |
|
incom |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ∩ 𝑆 ) = ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) |
| 9 |
|
incom |
⊢ ( 𝑆 ∩ 𝑇 ) = ( 𝑇 ∩ 𝑆 ) |
| 10 |
9 6
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑆 ) = ∅ ) |
| 11 |
1 2 3 4 5
|
restcls2lem |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑌 ) |
| 12 |
1 2 3 4 7 10 11
|
restclsseplem |
⊢ ( 𝜑 → ( ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ∩ 𝑆 ) = ∅ ) |
| 13 |
8 12
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) = ∅ ) |
| 14 |
1 2 3 4 7
|
restcls2lem |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑌 ) |
| 15 |
1 2 3 4 5 6 14
|
restclsseplem |
⊢ ( 𝜑 → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑇 ) = ∅ ) |
| 16 |
13 15
|
jca |
⊢ ( 𝜑 → ( ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) = ∅ ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑇 ) = ∅ ) ) |