Metamath Proof Explorer


Theorem restclssep

Description: Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024)

Ref Expression
Hypotheses restcls2.1
|- ( ph -> J e. Top )
restcls2.2
|- ( ph -> X = U. J )
restcls2.3
|- ( ph -> Y C_ X )
restcls2.4
|- ( ph -> K = ( J |`t Y ) )
restcls2.5
|- ( ph -> S e. ( Clsd ` K ) )
restclsseplem.6
|- ( ph -> ( S i^i T ) = (/) )
restclssep.7
|- ( ph -> T e. ( Clsd ` K ) )
Assertion restclssep
|- ( ph -> ( ( S i^i ( ( cls ` J ) ` T ) ) = (/) /\ ( ( ( cls ` J ) ` S ) i^i T ) = (/) ) )

Proof

Step Hyp Ref Expression
1 restcls2.1
 |-  ( ph -> J e. Top )
2 restcls2.2
 |-  ( ph -> X = U. J )
3 restcls2.3
 |-  ( ph -> Y C_ X )
4 restcls2.4
 |-  ( ph -> K = ( J |`t Y ) )
5 restcls2.5
 |-  ( ph -> S e. ( Clsd ` K ) )
6 restclsseplem.6
 |-  ( ph -> ( S i^i T ) = (/) )
7 restclssep.7
 |-  ( ph -> T e. ( Clsd ` K ) )
8 incom
 |-  ( ( ( cls ` J ) ` T ) i^i S ) = ( S i^i ( ( cls ` J ) ` T ) )
9 incom
 |-  ( S i^i T ) = ( T i^i S )
10 9 6 eqtr3id
 |-  ( ph -> ( T i^i S ) = (/) )
11 1 2 3 4 5 restcls2lem
 |-  ( ph -> S C_ Y )
12 1 2 3 4 7 10 11 restclsseplem
 |-  ( ph -> ( ( ( cls ` J ) ` T ) i^i S ) = (/) )
13 8 12 eqtr3id
 |-  ( ph -> ( S i^i ( ( cls ` J ) ` T ) ) = (/) )
14 1 2 3 4 7 restcls2lem
 |-  ( ph -> T C_ Y )
15 1 2 3 4 5 6 14 restclsseplem
 |-  ( ph -> ( ( ( cls ` J ) ` S ) i^i T ) = (/) )
16 13 15 jca
 |-  ( ph -> ( ( S i^i ( ( cls ` J ) ` T ) ) = (/) /\ ( ( ( cls ` J ) ` S ) i^i T ) = (/) ) )