Step |
Hyp |
Ref |
Expression |
1 |
|
restcls2.1 |
|- ( ph -> J e. Top ) |
2 |
|
restcls2.2 |
|- ( ph -> X = U. J ) |
3 |
|
restcls2.3 |
|- ( ph -> Y C_ X ) |
4 |
|
restcls2.4 |
|- ( ph -> K = ( J |`t Y ) ) |
5 |
|
restcls2.5 |
|- ( ph -> S e. ( Clsd ` K ) ) |
6 |
|
restclsseplem.6 |
|- ( ph -> ( S i^i T ) = (/) ) |
7 |
|
restclssep.7 |
|- ( ph -> T e. ( Clsd ` K ) ) |
8 |
|
incom |
|- ( ( ( cls ` J ) ` T ) i^i S ) = ( S i^i ( ( cls ` J ) ` T ) ) |
9 |
|
incom |
|- ( S i^i T ) = ( T i^i S ) |
10 |
9 6
|
eqtr3id |
|- ( ph -> ( T i^i S ) = (/) ) |
11 |
1 2 3 4 5
|
restcls2lem |
|- ( ph -> S C_ Y ) |
12 |
1 2 3 4 7 10 11
|
restclsseplem |
|- ( ph -> ( ( ( cls ` J ) ` T ) i^i S ) = (/) ) |
13 |
8 12
|
eqtr3id |
|- ( ph -> ( S i^i ( ( cls ` J ) ` T ) ) = (/) ) |
14 |
1 2 3 4 7
|
restcls2lem |
|- ( ph -> T C_ Y ) |
15 |
1 2 3 4 5 6 14
|
restclsseplem |
|- ( ph -> ( ( ( cls ` J ) ` S ) i^i T ) = (/) ) |
16 |
13 15
|
jca |
|- ( ph -> ( ( S i^i ( ( cls ` J ) ` T ) ) = (/) /\ ( ( ( cls ` J ) ` S ) i^i T ) = (/) ) ) |