Step |
Hyp |
Ref |
Expression |
1 |
|
restcls2.1 |
|- ( ph -> J e. Top ) |
2 |
|
restcls2.2 |
|- ( ph -> X = U. J ) |
3 |
|
restcls2.3 |
|- ( ph -> Y C_ X ) |
4 |
|
restcls2.4 |
|- ( ph -> K = ( J |`t Y ) ) |
5 |
|
restcls2.5 |
|- ( ph -> S e. ( Clsd ` K ) ) |
6 |
|
eqid |
|- U. K = U. K |
7 |
6
|
cldss |
|- ( S e. ( Clsd ` K ) -> S C_ U. K ) |
8 |
5 7
|
syl |
|- ( ph -> S C_ U. K ) |
9 |
3 2
|
sseqtrd |
|- ( ph -> Y C_ U. J ) |
10 |
|
eqid |
|- U. J = U. J |
11 |
10
|
restuni |
|- ( ( J e. Top /\ Y C_ U. J ) -> Y = U. ( J |`t Y ) ) |
12 |
1 9 11
|
syl2anc |
|- ( ph -> Y = U. ( J |`t Y ) ) |
13 |
4
|
unieqd |
|- ( ph -> U. K = U. ( J |`t Y ) ) |
14 |
12 13
|
eqtr4d |
|- ( ph -> Y = U. K ) |
15 |
8 14
|
sseqtrrd |
|- ( ph -> S C_ Y ) |