Metamath Proof Explorer


Theorem restcls2lem

Description: A closed set in a subspace topology is a subset of the subspace. (Contributed by Zhi Wang, 2-Sep-2024)

Ref Expression
Hypotheses restcls2.1
|- ( ph -> J e. Top )
restcls2.2
|- ( ph -> X = U. J )
restcls2.3
|- ( ph -> Y C_ X )
restcls2.4
|- ( ph -> K = ( J |`t Y ) )
restcls2.5
|- ( ph -> S e. ( Clsd ` K ) )
Assertion restcls2lem
|- ( ph -> S C_ Y )

Proof

Step Hyp Ref Expression
1 restcls2.1
 |-  ( ph -> J e. Top )
2 restcls2.2
 |-  ( ph -> X = U. J )
3 restcls2.3
 |-  ( ph -> Y C_ X )
4 restcls2.4
 |-  ( ph -> K = ( J |`t Y ) )
5 restcls2.5
 |-  ( ph -> S e. ( Clsd ` K ) )
6 eqid
 |-  U. K = U. K
7 6 cldss
 |-  ( S e. ( Clsd ` K ) -> S C_ U. K )
8 5 7 syl
 |-  ( ph -> S C_ U. K )
9 3 2 sseqtrd
 |-  ( ph -> Y C_ U. J )
10 eqid
 |-  U. J = U. J
11 10 restuni
 |-  ( ( J e. Top /\ Y C_ U. J ) -> Y = U. ( J |`t Y ) )
12 1 9 11 syl2anc
 |-  ( ph -> Y = U. ( J |`t Y ) )
13 4 unieqd
 |-  ( ph -> U. K = U. ( J |`t Y ) )
14 12 13 eqtr4d
 |-  ( ph -> Y = U. K )
15 8 14 sseqtrrd
 |-  ( ph -> S C_ Y )