| Step |
Hyp |
Ref |
Expression |
| 1 |
|
restcls2.1 |
|- ( ph -> J e. Top ) |
| 2 |
|
restcls2.2 |
|- ( ph -> X = U. J ) |
| 3 |
|
restcls2.3 |
|- ( ph -> Y C_ X ) |
| 4 |
|
restcls2.4 |
|- ( ph -> K = ( J |`t Y ) ) |
| 5 |
|
restcls2.5 |
|- ( ph -> S e. ( Clsd ` K ) ) |
| 6 |
|
eqid |
|- U. K = U. K |
| 7 |
6
|
cldss |
|- ( S e. ( Clsd ` K ) -> S C_ U. K ) |
| 8 |
5 7
|
syl |
|- ( ph -> S C_ U. K ) |
| 9 |
3 2
|
sseqtrd |
|- ( ph -> Y C_ U. J ) |
| 10 |
|
eqid |
|- U. J = U. J |
| 11 |
10
|
restuni |
|- ( ( J e. Top /\ Y C_ U. J ) -> Y = U. ( J |`t Y ) ) |
| 12 |
1 9 11
|
syl2anc |
|- ( ph -> Y = U. ( J |`t Y ) ) |
| 13 |
4
|
unieqd |
|- ( ph -> U. K = U. ( J |`t Y ) ) |
| 14 |
12 13
|
eqtr4d |
|- ( ph -> Y = U. K ) |
| 15 |
8 14
|
sseqtrrd |
|- ( ph -> S C_ Y ) |