Step |
Hyp |
Ref |
Expression |
1 |
|
restcls2.1 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
2 |
|
restcls2.2 |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
3 |
|
restcls2.3 |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
4 |
|
restcls2.4 |
⊢ ( 𝜑 → 𝐾 = ( 𝐽 ↾t 𝑌 ) ) |
5 |
|
restcls2.5 |
⊢ ( 𝜑 → 𝑆 ∈ ( Clsd ‘ 𝐾 ) ) |
6 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
7 |
6
|
cldss |
⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐾 ) → 𝑆 ⊆ ∪ 𝐾 ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ∪ 𝐾 ) |
9 |
3 2
|
sseqtrd |
⊢ ( 𝜑 → 𝑌 ⊆ ∪ 𝐽 ) |
10 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
11 |
10
|
restuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ ∪ 𝐽 ) → 𝑌 = ∪ ( 𝐽 ↾t 𝑌 ) ) |
12 |
1 9 11
|
syl2anc |
⊢ ( 𝜑 → 𝑌 = ∪ ( 𝐽 ↾t 𝑌 ) ) |
13 |
4
|
unieqd |
⊢ ( 𝜑 → ∪ 𝐾 = ∪ ( 𝐽 ↾t 𝑌 ) ) |
14 |
12 13
|
eqtr4d |
⊢ ( 𝜑 → 𝑌 = ∪ 𝐾 ) |
15 |
8 14
|
sseqtrrd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑌 ) |