| Step |
Hyp |
Ref |
Expression |
| 1 |
|
restcls2.1 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 2 |
|
restcls2.2 |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 3 |
|
restcls2.3 |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 4 |
|
restcls2.4 |
⊢ ( 𝜑 → 𝐾 = ( 𝐽 ↾t 𝑌 ) ) |
| 5 |
|
restcls2.5 |
⊢ ( 𝜑 → 𝑆 ∈ ( Clsd ‘ 𝐾 ) ) |
| 6 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 7 |
6
|
cldss |
⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐾 ) → 𝑆 ⊆ ∪ 𝐾 ) |
| 8 |
5 7
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ∪ 𝐾 ) |
| 9 |
3 2
|
sseqtrd |
⊢ ( 𝜑 → 𝑌 ⊆ ∪ 𝐽 ) |
| 10 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 11 |
10
|
restuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ ∪ 𝐽 ) → 𝑌 = ∪ ( 𝐽 ↾t 𝑌 ) ) |
| 12 |
1 9 11
|
syl2anc |
⊢ ( 𝜑 → 𝑌 = ∪ ( 𝐽 ↾t 𝑌 ) ) |
| 13 |
4
|
unieqd |
⊢ ( 𝜑 → ∪ 𝐾 = ∪ ( 𝐽 ↾t 𝑌 ) ) |
| 14 |
12 13
|
eqtr4d |
⊢ ( 𝜑 → 𝑌 = ∪ 𝐾 ) |
| 15 |
8 14
|
sseqtrrd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑌 ) |