Metamath Proof Explorer


Theorem restcls2

Description: A closed set in a subspace topology is the closure in the original topology intersecting with the subspace. (Contributed by Zhi Wang, 2-Sep-2024)

Ref Expression
Hypotheses restcls2.1
|- ( ph -> J e. Top )
restcls2.2
|- ( ph -> X = U. J )
restcls2.3
|- ( ph -> Y C_ X )
restcls2.4
|- ( ph -> K = ( J |`t Y ) )
restcls2.5
|- ( ph -> S e. ( Clsd ` K ) )
Assertion restcls2
|- ( ph -> S = ( ( ( cls ` J ) ` S ) i^i Y ) )

Proof

Step Hyp Ref Expression
1 restcls2.1
 |-  ( ph -> J e. Top )
2 restcls2.2
 |-  ( ph -> X = U. J )
3 restcls2.3
 |-  ( ph -> Y C_ X )
4 restcls2.4
 |-  ( ph -> K = ( J |`t Y ) )
5 restcls2.5
 |-  ( ph -> S e. ( Clsd ` K ) )
6 4 fveq2d
 |-  ( ph -> ( cls ` K ) = ( cls ` ( J |`t Y ) ) )
7 6 fveq1d
 |-  ( ph -> ( ( cls ` K ) ` S ) = ( ( cls ` ( J |`t Y ) ) ` S ) )
8 cldcls
 |-  ( S e. ( Clsd ` K ) -> ( ( cls ` K ) ` S ) = S )
9 5 8 syl
 |-  ( ph -> ( ( cls ` K ) ` S ) = S )
10 3 2 sseqtrd
 |-  ( ph -> Y C_ U. J )
11 1 2 3 4 5 restcls2lem
 |-  ( ph -> S C_ Y )
12 eqid
 |-  U. J = U. J
13 eqid
 |-  ( J |`t Y ) = ( J |`t Y )
14 12 13 restcls
 |-  ( ( J e. Top /\ Y C_ U. J /\ S C_ Y ) -> ( ( cls ` ( J |`t Y ) ) ` S ) = ( ( ( cls ` J ) ` S ) i^i Y ) )
15 1 10 11 14 syl3anc
 |-  ( ph -> ( ( cls ` ( J |`t Y ) ) ` S ) = ( ( ( cls ` J ) ` S ) i^i Y ) )
16 7 9 15 3eqtr3d
 |-  ( ph -> S = ( ( ( cls ` J ) ` S ) i^i Y ) )