Step |
Hyp |
Ref |
Expression |
1 |
|
restcls2.1 |
|- ( ph -> J e. Top ) |
2 |
|
restcls2.2 |
|- ( ph -> X = U. J ) |
3 |
|
restcls2.3 |
|- ( ph -> Y C_ X ) |
4 |
|
restcls2.4 |
|- ( ph -> K = ( J |`t Y ) ) |
5 |
|
restcls2.5 |
|- ( ph -> S e. ( Clsd ` K ) ) |
6 |
4
|
fveq2d |
|- ( ph -> ( cls ` K ) = ( cls ` ( J |`t Y ) ) ) |
7 |
6
|
fveq1d |
|- ( ph -> ( ( cls ` K ) ` S ) = ( ( cls ` ( J |`t Y ) ) ` S ) ) |
8 |
|
cldcls |
|- ( S e. ( Clsd ` K ) -> ( ( cls ` K ) ` S ) = S ) |
9 |
5 8
|
syl |
|- ( ph -> ( ( cls ` K ) ` S ) = S ) |
10 |
3 2
|
sseqtrd |
|- ( ph -> Y C_ U. J ) |
11 |
1 2 3 4 5
|
restcls2lem |
|- ( ph -> S C_ Y ) |
12 |
|
eqid |
|- U. J = U. J |
13 |
|
eqid |
|- ( J |`t Y ) = ( J |`t Y ) |
14 |
12 13
|
restcls |
|- ( ( J e. Top /\ Y C_ U. J /\ S C_ Y ) -> ( ( cls ` ( J |`t Y ) ) ` S ) = ( ( ( cls ` J ) ` S ) i^i Y ) ) |
15 |
1 10 11 14
|
syl3anc |
|- ( ph -> ( ( cls ` ( J |`t Y ) ) ` S ) = ( ( ( cls ` J ) ` S ) i^i Y ) ) |
16 |
7 9 15
|
3eqtr3d |
|- ( ph -> S = ( ( ( cls ` J ) ` S ) i^i Y ) ) |